Pricing Options in Jump-Diffusion Models: An Extrapolation Approach
نویسندگان
چکیده
We propose a new computational method for the valuation of options in jump-diffusion models. The option value function for European and barrier options satisfies a partial integrodifferential equation (PIDE). This PIDE is commonly integrated in time by implicit-explicit (IMEX) time discretization schemes, where the differential (diffusion) term is treated implicitly, while the integral (jump) term is treated explicitly. In particular, the popular IMEX Euler scheme is first-order accurate in time. Second-order accuracy in time can be achieved by using the IMEX midpoint scheme. In contrast to the above approaches, we propose a new high-order time discretization scheme for the PIDE based on the extrapolation approach to the solution of ODEs that also treats the diffusion term implicitly and the jump term explicitly. The scheme is simple to implement, can be added to any PIDE solver based on the IMEX Euler scheme, and is remarkably fast and accurate. We demonstrate our approach on the examples of Merton’s and Kou’s jump-diffusion models, the diffusion-extended variance gamma model, as well as the two-dimensional Duffie-Pan-Singleton model with correlated and contemporaneous jumps in the stock price and its volatility. By way of example, pricing a one-year double-barrier option in Kou’s jump-diffusion model, our scheme attains accuracy of 10−5 in 72 time steps (in 0.05 seconds). In contrast, it takes the first-order IMEX Euler scheme more than 1.3 million time steps (in 873 seconds) and the second-order IMEX midpoint scheme 768 time steps (in 0.49 seconds) to attain the same accuracy. Our scheme is also well suited for Bermudan options. Combining simplicity of implementation and remarkable gains in computational efficiency, we expect this method to be very attractive to financial engineering modelers.
منابع مشابه
Pricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process
Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملJump-Diffusion Models for Asset Pricing in Financial Engineering
In this survey we shall focus on the following issues related to jump-diffusion models for asset pricing in financial engineering. (1) The controversy over tailweight of distributions. (2) Identifying a risk-neutral pricing measure by using the rational expectations equilibrium. (3) Using Laplace transforms to pricing options, including European call/put options, path-dependent options, such as...
متن کاملPricing of Futures Contracts by Considering Stochastic Exponential Jump Domain of Spot Price
Derivatives are alternative financial instruments which extend traders opportunities to achieve some financial goals. They are risk management instruments that are related to a data in the future, and also they react to uncertain prices. Study on pricing futures can provide useful tools to understand the stochastic behavior of prices to manage the risk of price volatility. Thus, this study eval...
متن کاملOption Pricing in Some Non-Lévy Jump Models
This paper considers pricing European options in a large class of one-dimensional Markovian jump processes known as subordinate diffusions, which are obtained by time changing a diffusion process with an independent Lévy or additive random clock. These jump processes are nonLévy in general, and they can be viewed as natural generalization of many popular Lévy processes used in finance. Subordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Operations Research
دوره 56 شماره
صفحات -
تاریخ انتشار 2008